\(\int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{\sqrt {a+i a \tan (e+f x)}} \, dx\) [831]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 45, antiderivative size = 169 \[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{\sqrt {a+i a \tan (e+f x)}} \, dx=\frac {2 (i A-2 B) c^{3/2} \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{\sqrt {a} f}+\frac {(i A-2 B) c \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{a f}+\frac {(i A-B) (c-i c \tan (e+f x))^{3/2}}{f \sqrt {a+i a \tan (e+f x)}} \]

[Out]

2*(I*A-2*B)*c^(3/2)*arctan(c^(1/2)*(a+I*a*tan(f*x+e))^(1/2)/a^(1/2)/(c-I*c*tan(f*x+e))^(1/2))/f/a^(1/2)+(I*A-2
*B)*c*(a+I*a*tan(f*x+e))^(1/2)*(c-I*c*tan(f*x+e))^(1/2)/a/f+(I*A-B)*(c-I*c*tan(f*x+e))^(3/2)/f/(a+I*a*tan(f*x+
e))^(1/2)

Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 169, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {3669, 79, 52, 65, 223, 209} \[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{\sqrt {a+i a \tan (e+f x)}} \, dx=\frac {2 c^{3/2} (-2 B+i A) \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{\sqrt {a} f}+\frac {c (-2 B+i A) \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{a f}+\frac {(-B+i A) (c-i c \tan (e+f x))^{3/2}}{f \sqrt {a+i a \tan (e+f x)}} \]

[In]

Int[((A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(3/2))/Sqrt[a + I*a*Tan[e + f*x]],x]

[Out]

(2*(I*A - 2*B)*c^(3/2)*ArcTan[(Sqrt[c]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[c - I*c*Tan[e + f*x]])])/(Sqr
t[a]*f) + ((I*A - 2*B)*c*Sqrt[a + I*a*Tan[e + f*x]]*Sqrt[c - I*c*Tan[e + f*x]])/(a*f) + ((I*A - B)*(c - I*c*Ta
n[e + f*x])^(3/2))/(f*Sqrt[a + I*a*Tan[e + f*x]])

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 3669

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[a*(c/f), Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x), x
], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(a c) \text {Subst}\left (\int \frac {(A+B x) \sqrt {c-i c x}}{(a+i a x)^{3/2}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {(i A-B) (c-i c \tan (e+f x))^{3/2}}{f \sqrt {a+i a \tan (e+f x)}}-\frac {((A+2 i B) c) \text {Subst}\left (\int \frac {\sqrt {c-i c x}}{\sqrt {a+i a x}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {(i A-2 B) c \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{a f}+\frac {(i A-B) (c-i c \tan (e+f x))^{3/2}}{f \sqrt {a+i a \tan (e+f x)}}-\frac {\left ((A+2 i B) c^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+i a x} \sqrt {c-i c x}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = \frac {(i A-2 B) c \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{a f}+\frac {(i A-B) (c-i c \tan (e+f x))^{3/2}}{f \sqrt {a+i a \tan (e+f x)}}+\frac {\left (2 (i A-2 B) c^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {2 c-\frac {c x^2}{a}}} \, dx,x,\sqrt {a+i a \tan (e+f x)}\right )}{a f} \\ & = \frac {(i A-2 B) c \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{a f}+\frac {(i A-B) (c-i c \tan (e+f x))^{3/2}}{f \sqrt {a+i a \tan (e+f x)}}+\frac {\left (2 (i A-2 B) c^2\right ) \text {Subst}\left (\int \frac {1}{1+\frac {c x^2}{a}} \, dx,x,\frac {\sqrt {a+i a \tan (e+f x)}}{\sqrt {c-i c \tan (e+f x)}}\right )}{a f} \\ & = \frac {2 (i A-2 B) c^{3/2} \arctan \left (\frac {\sqrt {c} \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {c-i c \tan (e+f x)}}\right )}{\sqrt {a} f}+\frac {(i A-2 B) c \sqrt {a+i a \tan (e+f x)} \sqrt {c-i c \tan (e+f x)}}{a f}+\frac {(i A-B) (c-i c \tan (e+f x))^{3/2}}{f \sqrt {a+i a \tan (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.60 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.80 \[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{\sqrt {a+i a \tan (e+f x)}} \, dx=\frac {\sqrt {c-i c \tan (e+f x)} \left (B c (1-i \tan (e+f x))+2 (i A-2 B) c \left (1+\frac {\arcsin \left (\frac {\sqrt {a+i a \tan (e+f x)}}{\sqrt {2} \sqrt {a}}\right ) \sqrt {a+i a \tan (e+f x)}}{\sqrt {a} \sqrt {1-i \tan (e+f x)}}\right )\right )}{f \sqrt {a+i a \tan (e+f x)}} \]

[In]

Integrate[((A + B*Tan[e + f*x])*(c - I*c*Tan[e + f*x])^(3/2))/Sqrt[a + I*a*Tan[e + f*x]],x]

[Out]

(Sqrt[c - I*c*Tan[e + f*x]]*(B*c*(1 - I*Tan[e + f*x]) + 2*(I*A - 2*B)*c*(1 + (ArcSin[Sqrt[a + I*a*Tan[e + f*x]
]/(Sqrt[2]*Sqrt[a])]*Sqrt[a + I*a*Tan[e + f*x]])/(Sqrt[a]*Sqrt[1 - I*Tan[e + f*x]]))))/(f*Sqrt[a + I*a*Tan[e +
 f*x]])

Maple [B] (verified)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 498 vs. \(2 (140 ) = 280\).

Time = 0.38 (sec) , antiderivative size = 499, normalized size of antiderivative = 2.95

method result size
derivativedivides \(\frac {\sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, c \left (-2 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{2}+2 i A \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )-A \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{2}+2 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +4 i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )-4 B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )-B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )^{2}-2 i A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}+A \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +2 A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+3 B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{f a \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (i-\tan \left (f x +e \right )\right )^{2} \sqrt {a c}}\) \(499\)
default \(\frac {\sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, c \left (-2 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{2}+2 i A \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )-A \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )^{2}+2 i B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +4 i B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )-4 B \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c \tan \left (f x +e \right )-B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )^{2}-2 i A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}+A \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c +2 A \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+3 B \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{f a \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (i-\tan \left (f x +e \right )\right )^{2} \sqrt {a c}}\) \(499\)
parts \(\frac {i A \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, c \left (i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) \tan \left (f x +e \right )^{2} a c -i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c -2 i \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )+2 \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) \tan \left (f x +e \right ) a c -2 \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right )}{f a \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (i-\tan \left (f x +e \right )\right )^{2} \sqrt {a c}}+\frac {B \left (-2 i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) \tan \left (f x +e \right )^{2} a c +2 i \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) a c -4 \ln \left (\frac {a c \tan \left (f x +e \right )+\sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}}{\sqrt {a c}}\right ) \tan \left (f x +e \right ) a c +4 i \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \tan \left (f x +e \right )-\tan \left (f x +e \right )^{2} \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \sqrt {a c}+3 \sqrt {a c}\, \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\right ) \sqrt {-c \left (i \tan \left (f x +e \right )-1\right )}\, \sqrt {a \left (1+i \tan \left (f x +e \right )\right )}\, c}{f a \sqrt {a c \left (1+\tan \left (f x +e \right )^{2}\right )}\, \left (i-\tan \left (f x +e \right )\right )^{2} \sqrt {a c}}\) \(568\)

[In]

int((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/f*(-c*(I*tan(f*x+e)-1))^(1/2)*(a*(1+I*tan(f*x+e)))^(1/2)/a*c*(-2*I*B*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+
tan(f*x+e)^2))^(1/2))/(a*c)^(1/2))*a*c*tan(f*x+e)^2+2*I*A*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2)
)^(1/2))/(a*c)^(1/2))*a*c*tan(f*x+e)-A*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2
))*a*c*tan(f*x+e)^2+2*I*B*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2))*a*c+4*I*B*
(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*tan(f*x+e)-4*B*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^
(1/2))/(a*c)^(1/2))*a*c*tan(f*x+e)-B*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*tan(f*x+e)^2-2*I*A*(a*c)^(1/2)*(
a*c*(1+tan(f*x+e)^2))^(1/2)+A*ln((a*c*tan(f*x+e)+(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c)^(1/2))*a*c+2*
A*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2)*tan(f*x+e)+3*B*(a*c)^(1/2)*(a*c*(1+tan(f*x+e)^2))^(1/2))/(a*c*(1+ta
n(f*x+e)^2))^(1/2)/(I-tan(f*x+e))^2/(a*c)^(1/2)

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 456 vs. \(2 (131) = 262\).

Time = 0.27 (sec) , antiderivative size = 456, normalized size of antiderivative = 2.70 \[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{\sqrt {a+i a \tan (e+f x)}} \, dx=-\frac {{\left (a \sqrt {\frac {{\left (A^{2} + 4 i \, A B - 4 \, B^{2}\right )} c^{3}}{a f^{2}}} f e^{\left (i \, f x + i \, e\right )} \log \left (-\frac {4 \, {\left (2 \, {\left ({\left (i \, A - 2 \, B\right )} c e^{\left (3 i \, f x + 3 i \, e\right )} + {\left (i \, A - 2 \, B\right )} c e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} + {\left (a f e^{\left (2 i \, f x + 2 i \, e\right )} - a f\right )} \sqrt {\frac {{\left (A^{2} + 4 i \, A B - 4 \, B^{2}\right )} c^{3}}{a f^{2}}}\right )}}{{\left (-i \, A + 2 \, B\right )} c e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (-i \, A + 2 \, B\right )} c}\right ) - a \sqrt {\frac {{\left (A^{2} + 4 i \, A B - 4 \, B^{2}\right )} c^{3}}{a f^{2}}} f e^{\left (i \, f x + i \, e\right )} \log \left (-\frac {4 \, {\left (2 \, {\left ({\left (i \, A - 2 \, B\right )} c e^{\left (3 i \, f x + 3 i \, e\right )} + {\left (i \, A - 2 \, B\right )} c e^{\left (i \, f x + i \, e\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} - {\left (a f e^{\left (2 i \, f x + 2 i \, e\right )} - a f\right )} \sqrt {\frac {{\left (A^{2} + 4 i \, A B - 4 \, B^{2}\right )} c^{3}}{a f^{2}}}\right )}}{{\left (-i \, A + 2 \, B\right )} c e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (-i \, A + 2 \, B\right )} c}\right ) + 4 \, {\left ({\left (-i \, A + 2 \, B\right )} c e^{\left (2 i \, f x + 2 i \, e\right )} + {\left (-i \, A + B\right )} c\right )} \sqrt {\frac {a}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}} \sqrt {\frac {c}{e^{\left (2 i \, f x + 2 i \, e\right )} + 1}}\right )} e^{\left (-i \, f x - i \, e\right )}}{2 \, a f} \]

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

-1/2*(a*sqrt((A^2 + 4*I*A*B - 4*B^2)*c^3/(a*f^2))*f*e^(I*f*x + I*e)*log(-4*(2*((I*A - 2*B)*c*e^(3*I*f*x + 3*I*
e) + (I*A - 2*B)*c*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)) + (a*f
*e^(2*I*f*x + 2*I*e) - a*f)*sqrt((A^2 + 4*I*A*B - 4*B^2)*c^3/(a*f^2)))/((-I*A + 2*B)*c*e^(2*I*f*x + 2*I*e) + (
-I*A + 2*B)*c)) - a*sqrt((A^2 + 4*I*A*B - 4*B^2)*c^3/(a*f^2))*f*e^(I*f*x + I*e)*log(-4*(2*((I*A - 2*B)*c*e^(3*
I*f*x + 3*I*e) + (I*A - 2*B)*c*e^(I*f*x + I*e))*sqrt(a/(e^(2*I*f*x + 2*I*e) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e)
+ 1)) - (a*f*e^(2*I*f*x + 2*I*e) - a*f)*sqrt((A^2 + 4*I*A*B - 4*B^2)*c^3/(a*f^2)))/((-I*A + 2*B)*c*e^(2*I*f*x
+ 2*I*e) + (-I*A + 2*B)*c)) + 4*((-I*A + 2*B)*c*e^(2*I*f*x + 2*I*e) + (-I*A + B)*c)*sqrt(a/(e^(2*I*f*x + 2*I*e
) + 1))*sqrt(c/(e^(2*I*f*x + 2*I*e) + 1)))*e^(-I*f*x - I*e)/(a*f)

Sympy [F]

\[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{\sqrt {a+i a \tan (e+f x)}} \, dx=\int \frac {\left (- i c \left (\tan {\left (e + f x \right )} + i\right )\right )^{\frac {3}{2}} \left (A + B \tan {\left (e + f x \right )}\right )}{\sqrt {i a \left (\tan {\left (e + f x \right )} - i\right )}}\, dx \]

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))**(3/2)/(a+I*a*tan(f*x+e))**(1/2),x)

[Out]

Integral((-I*c*(tan(e + f*x) + I))**(3/2)*(A + B*tan(e + f*x))/sqrt(I*a*(tan(e + f*x) - I)), x)

Maxima [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 898 vs. \(2 (131) = 262\).

Time = 0.47 (sec) , antiderivative size = 898, normalized size of antiderivative = 5.31 \[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{\sqrt {a+i a \tan (e+f x)}} \, dx=\text {Too large to display} \]

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

(4*(A + 2*I*B)*c*cos(2*f*x + 2*e) + 4*(I*A - 2*B)*c*sin(2*f*x + 2*e) + 4*(A + I*B)*c + 2*((A + 2*I*B)*c*cos(3/
2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (A + 2*I*B)*c*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2
*e))) + (I*A - 2*B)*c*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (I*A - 2*B)*c*sin(1/2*arctan2(sin
(2*f*x + 2*e), cos(2*f*x + 2*e))))*arctan2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), sin(1/2*arcta
n2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1) + 2*((A + 2*I*B)*c*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x +
2*e))) + (A + 2*I*B)*c*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (I*A - 2*B)*c*sin(3/2*arctan2(si
n(2*f*x + 2*e), cos(2*f*x + 2*e))) + (I*A - 2*B)*c*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*arcta
n2(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))), -sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))
 + 1) - ((-I*A + 2*B)*c*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (-I*A + 2*B)*c*cos(1/2*arctan2(
sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (A + 2*I*B)*c*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (A
 + 2*I*B)*c*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*log(cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*
f*x + 2*e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 + 2*sin(1/2*arctan2(sin(2*f*x + 2*e),
cos(2*f*x + 2*e))) + 1) - ((I*A - 2*B)*c*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + (I*A - 2*B)*c*
cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) - (A + 2*I*B)*c*sin(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f
*x + 2*e))) - (A + 2*I*B)*c*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*log(cos(1/2*arctan2(sin(2*f*
x + 2*e), cos(2*f*x + 2*e)))^2 + sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e)))^2 - 2*sin(1/2*arctan2(si
n(2*f*x + 2*e), cos(2*f*x + 2*e))) + 1))*sqrt(a)*sqrt(c)/((-2*I*a*cos(3/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x
+ 2*e))) - 2*I*a*cos(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))) + 2*a*sin(3/2*arctan2(sin(2*f*x + 2*e),
cos(2*f*x + 2*e))) + 2*a*sin(1/2*arctan2(sin(2*f*x + 2*e), cos(2*f*x + 2*e))))*f)

Giac [F]

\[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{\sqrt {a+i a \tan (e+f x)}} \, dx=\int { \frac {{\left (B \tan \left (f x + e\right ) + A\right )} {\left (-i \, c \tan \left (f x + e\right ) + c\right )}^{\frac {3}{2}}}{\sqrt {i \, a \tan \left (f x + e\right ) + a}} \,d x } \]

[In]

integrate((A+B*tan(f*x+e))*(c-I*c*tan(f*x+e))^(3/2)/(a+I*a*tan(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate((B*tan(f*x + e) + A)*(-I*c*tan(f*x + e) + c)^(3/2)/sqrt(I*a*tan(f*x + e) + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B \tan (e+f x)) (c-i c \tan (e+f x))^{3/2}}{\sqrt {a+i a \tan (e+f x)}} \, dx=\int \frac {\left (A+B\,\mathrm {tan}\left (e+f\,x\right )\right )\,{\left (c-c\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}{\sqrt {a+a\,\mathrm {tan}\left (e+f\,x\right )\,1{}\mathrm {i}}} \,d x \]

[In]

int(((A + B*tan(e + f*x))*(c - c*tan(e + f*x)*1i)^(3/2))/(a + a*tan(e + f*x)*1i)^(1/2),x)

[Out]

int(((A + B*tan(e + f*x))*(c - c*tan(e + f*x)*1i)^(3/2))/(a + a*tan(e + f*x)*1i)^(1/2), x)